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Abstract

The jerk is the third time derivative of the position vector, and hence the time derivative of
acceleration vector. In this paper, we take into consideration a particle moving on a regular
surface curve, which is equipped with the Darboux frame, in three dimensional Euclidean
space and resolve its jerk vector along tangential direction and two special radial directions.
Moreover, the motion of a particle along a right handed circular helix is given as an illustrative
example.
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1 Introduction

The force acting on a particle is concerned with its acceleration through the equality F = ma in
Newtonian physics. The jerk J is the time derivative of acceleration. Thus, if the mass is constant
the equality J = 1

m
dF
dt holds. If the time derivative of force is nonzero, the jerk vector is a nonzero

vector.
For a large acceleration of short duration, the jerk vector has precious applications in the design

of intermittent-motion mechanisms, e.g. cams and genevas [1,2]. When a gymnast does gymnastic
exercises or a machinist drives a high-speed train or a stock-car racer races on track, the acceleration
changes suddenly. In situations like this, to estimate the lower threshold of just noticeable jerk and
upper values of the jerk that can be tolerated by humans without undue discomfort has an important
place [3]. These calculations were considered by Melchior in [4].

The decomposition of the jerk vector along a curve in 3-dimensional Euclidean space E3 is well
known in the literature due to the study [5] of Resal. In this decomposition, the jerk vector lies along
the tangential, normal and binormal components. Recently, a new resolution of jerk vector along the
tangential direction, radial direction in osculating plane and the other radial direction in rectifying
plane has been presented by Özen et al. [6]. Also, more recently, the jerk of a particle moving on an
analytic space curve equipped with the modified orthogonal frame has been investigated by Özen et
al. [7]. In the present paper, we inspire from the studies [6,7] and discuss the same topic according
to Darboux frame for a particle moving on a regular surface curve.

In this paper, firstly, we have given a short knowledge about the Serret-Frenet frame and
Darboux frame. Afterwards, for a particle moving along a regular surface curve, which is equipped
with the Darboux frame, we have obtained the resolution of the jerk vector along tangential and
radial directions. Moreover, an example for circular helices has been given.
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2 Preliminaries

Let E3 be equipped with the standard scalar product

U ·V = u1v1 + u2v2 + u3v3

where U = (u1 , u2 , u3) , V = (v1 , v2 , v3) are any vectors in E3. The norm of a vector U ∈ E3

is defined as ‖U‖ =
√
U ·U. A curve α = α (s) : I ⊂ R → E3 is called a unit speed curve if

‖α′ (s)‖ = 1 for all s ∈ I. In that case, s is called arc-length parameter of α (s).
The Serret-Frenet frame of the curve α (s) is denoted by {T (s) , N (s) , B (s)} where the unit

vectors T (s) , N (s) and B (s) are the unit tangent, unit principal normal and unit binormal vectors
respectively. Also, the Serret-Frenet formulas are given as follows:

T ′ = κN, N ′ = −κT + τB, B ′ = −τN (2.1)

where κ (s) = ‖T ′ (s)‖ is the curvature function and τ (s) = −(B ′ (s) ·N (s)) is the torsion function
[8].

Let M be a regular surface and α : I ⊂ R → M be a unit speed curve on this surface. In this
case, there exists the Darboux frame which is showed with {T, Y, U} along the curve α. In this
frame, T is the unit tangent vector of the curve α, and U is the unit normal vector of the surface
M restricted to the curve α. On the other hand, Y is the unit vector which is obtained by vector
product these two vectors, that is, Y = U × T. Because the unit tangent vector T is mutual in
both Serret-Frenet frame and Darboux frame, the vectors N, B, Y, U lie in the same plane. Thus,
there is a relation between these frames as in the following:

T = T, Y = cosϕN− sinϕB, U = sinϕN + cosϕB (2.2)

where ϕ is the angle between the vectors U and B (or Y and N). Furthermore, the derivative
formulas of the Darboux frame are given by

T ′ = kgY + knU, Y ′ = −kgT + τgU, U ′ = −knT− τgY (2.3)

where kn is the normal curvature, kg is the geodesic curvature and τg is the geodesic torsion of α.
Also, kg, kn and τg satisfy the equations

kg(s) =

√
kg

2(s) + kn
2(s) cosϕ (s) ,

kn(s) =

√
kg

2(s) + kn
2(s) sinϕ (s) , (2.4)

τg(s) = τ(s)− dϕ (s)

ds

where ϕ (s) = arctan (kn (s)/kg (s) ) and
√
kg

2(s) + kn
2(s) = κ(s) [9–12].

Let a particle P of mass m (> 0) move on a regular surface M in E3. Choose any fixed origin
O in the space and symbolize the position vector of P at time t by x. Let C, with the arc length
parameter s, be the oriented curve traced out by P where the arc length of C corresponds t. In
that case, the unit tangent vector for the curve C can be written as

T =
dx

ds
. (2.5)
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By means of (2.1) and (2.5), the velocity vector v = dx/dt , the acceleration vector a = dv/dt and
the jerk vector J = da/dt of P at time t are given by (see [13] for more details):

v =

(
ds

dt

)
T,

a =

(
d2s

dt2

)
T+ κ

(
ds

dt

)2

N,

J =

[(
d3s

dt3

)
−
(
ds

dt

)3

κ2

]
T+

[
3

(
ds

dt

)(
d2s

dt2

)
κ+

(
ds

dt

)3
dκ

ds

]
N+

[
κτ

(
ds

dt

)3
]
B.

On the other hand, the acceleration vector a of P at time t is given as

a =

(
d2s

dt2

)
T +

√
kg

2 + kn
2

(
ds

dt

)2

cosϕY +

√
kg

2 + kn
2

(
ds

dt

)2

sinϕU (2.6)

with respect to Darboux basis [14].

3 Jerk of a particle moving along a regular surface curve

In this section, the jerk vector of a particle moving along a regular surface curve is given according
to Darboux basis. Moreover, the resolution of the jerk vector along tangential and two special
radial directions has been found. To do so, we continue to take into consideration the aforesaid
particle P .

By using (2.3), (2.4) and (2.6), we can immediately get the jerk vector J of P at time t with
respect to Darboux basis as follows:

J = CT T + CY Y + CUU (3.1)

where

CT =

(
d3s

dt3

)
−
(
ds

dt

)3 (
kg

2 + kn
2
)
,

CY = cosϕ

3

(
ds

dt

)(
d2s

dt2

)√
kg

2 + kn
2 +

d

(√
kg

2 + kn
2

)
ds

(
ds

dt

)3


− sinϕ

[√
kg

2 + kn
2

(
τg +

dϕ

ds

)(
ds

dt

)3
]
,

CU = sinϕ

3

(
ds

dt

)(
d2s

dt2

)√
kg

2 + kn
2 +

d

(√
kg

2 + kn
2

)
ds

(
ds

dt

)3


+ cosϕ

[√
kg

2 + kn
2

(
τg +

dϕ

ds

)(
ds

dt

)3
]
.
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This equation yields

J =

[(
d3s

dt3

)
−
(
ds

dt

)3 (
kg

2 + kn
2)]T

+

3(ds
dt

)(
d2s

dt2

)√
kg

2 + kn
2 +

d
(√

kg
2 + kn

2
)

ds

(
ds

dt

)3
 (cosϕY + sinϕU) (3.2)

+

[√
kg

2 + kn
2

(
τg +

dϕ

ds

)(
ds

dt

)3
]
(− sinϕY + cosϕU) .
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Figure 1. A particle P moves along a curve C on a regular surface M in 3-dimensional Euclidean
space (To provide visual harmony of the figure, the surface M has been removed from the figure).
B is the foot of the perpendicular which is from origin O to the plane π1 and BZ is perpendicular
to the tangent line. The position vector of P relative to B is shown with r, and er is the unit
vector in direction of BP . Y is the foot of the perpendicular which is from origin O to the plane π2
and Y K is perpendicular to the line determined by the vector (− sinϕY + cosϕU). The position
vector of P relative to Y is shown with r∗, and er

∗ is the unit vector in direction of Y P .



On the jerk in motion along a regular surface curve 73

A particle, moving on a curve, may be seen as a point of this curve. So, P has a position vector
in terms of the Darboux basis of the curve C. Suppose that the position vector of P on the Darboux
basis is resolved as in the following:

x = qT− p (cosϕY + sinϕU) + b (− sinϕY + cosϕU) (3.3)

where
q = x ·T, −p = x · (cosϕY + sinϕU), b = x · (− sinϕY + cosϕU). (3.4)

Show with r and r∗ the vectors

r = qT− p (cosϕY + sinϕU) , r∗ = qT + b (− sinϕY + cosϕU) (3.5)

lying in plane π1 = Sp {T, cosϕY + sinϕU} to C at P and in plane π2 = Sp {T,− sinϕY + cosϕU}
to C at P , respectively. In that case, we get the equalities

r2 = r · r = p2 + q2, (r∗)
2

= r∗ · r∗ = q2 + b2 (3.6)

where r and r∗ are the lengths of the vectors r and r∗, respectively (see Figure 1).
By vector product of the position vector x given in (3.3), and the linear momentum vector

p = m
(
ds
dt

)
T, the angular momentum vector of P about O is obtained as follows:

HO = mb

(
ds

dt

)
(cosϕY + sinϕU) +mp

(
ds

dt

)
(− sinϕY + cosϕU) . (3.7)

By using the equation (3.5), let us express the vector (cosϕY + sinϕU) in terms of r and T
and express the vector (− sinϕY + cosϕU) in terms of r∗ and T to resolve the jerk vector J in
(3.2) along the tangential direction, radial direction BP in the plane π1, and radial direction Y P
in the plane π2. But, these are possible if and only if p 6= 0 and b 6= 0. If we make the physical
assumption that the components of the angular momentum along the vectors (cosϕY + sinϕU)
and (− sinϕY + cosϕU) never vanish, we can ensure that each of p and b are not equal to zero.
Then, we can write the equations

cosϕY + sinϕU =
1

p
(−r + qT) , − sinϕY + cosϕU =

1

b
(−qT + r∗) . (3.8)

Also, from the aforesaid physical assumption and the equation (3.6), r 6= 0 and r∗ 6= 0. Therefore,
the unit vectors er and er

∗ can be defined as

er =
1

r
r, er

∗ =
1

r∗
r∗. (3.9)

By means of (3.8) and (3.9), we get

cosϕY + sinϕU =
(−r er + qT)

p
, − sinϕY + cosϕU =

(−qT + r∗er
∗)

b
. (3.10)
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Now, if we substitute the equation (3.10) into the equation (3.2), we obtain the jerk vector J as in
the following:

J =


(

d3s
dt3

)
−
(
ds
dt

)3 (
kg

2 + kn
2
)

+ 3 q
p

(
ds
dt

) (
d2s
dt2

)√
kg

2 + kn
2

+ q
p

d
(√

kg
2+kn

2
)

ds

(
ds
dt

)3 − q
b

(
ds
dt

)3√
kg

2 + kn
2
(
τg + dϕ

ds

)
T

+

−3
r

p

(
ds

dt

)(
d2s

dt2

)√
kg

2 + kn
2 − r

p

d

(√
kg

2 + kn
2

)
ds

(
ds

dt

)3

 er (3.11)

+

[
r∗

b

(
ds

dt

)3√
kg

2 + kn
2

(
τg +

dϕ

ds

)]
er
∗

= Tt T + Tr er + Tr∗ er
∗.

Here, Tr, Tr∗ and Tt are the first radial, second radial and tangential components of the jerk,
respectively.

By taking into consideration the expressions and equations which are given above, we can state
the following theorem:

Theorem 3.1. Let a particle P of mass m (> 0) move on a regular surface curve C in 3-dimensional
Euclidean space E3, and suppose that each of the components of angular momentum along the unit
vector (cosϕY + sinϕU) and along the unit vector (− sinϕY + cosϕU) never vanish. In that
case, the jerk vector J of the particle P can be expressed as in (3.11).

4 Motion of a particle along a right-handed circular helix

Suppose that a particle P travels along a right-handed circular helix which lies on a cylinder of
radius R. The position vector of P is given by

x = R cos (ωt) i +R sin (ωt) j + vztk

in Cartesian coordinates where t and ω indicate the time and time independent angular frequency,
respectively. Here, {i , j , k } represents a fixed right-handed orthonormal frame, vz represents a
positive constant. Let the axis k be the axis of the helix and α be the helix angle which satisfies
tanα = Rω

vz
. Then, we get

v = −Rω sin (ωt) i +Rω cos (ωt) j + vzk,

a = −Rω2 cos (ωt) i −Rω2 sin (ωt) j,

J = Rω3 sin (ωt) i −Rω3 cos (ωt) j

for the particle P . Also, we can write easily the following:

dx = −Rω sin (ωt) dt, dy = Rω cos (ωt) dt, dz = vzdt, ds =
√
R2ω2 + vz2dt.

So, the equalities
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ds

dt
=
√
R2ω2 + vz2,

d2s

dt2
= 0,

d3s

dt3
= 0

hold.
As the path of the particle P , the right-handed circular helix on a cylinder of radius R is given

below:

Figure 2.

It is easy to show that the helix can be parameterized by the arc-length s = s(t) = t
√
R2ω2 + vz2

as

γ (s) =

(
R cos

(
ωs√

R2ω2 + vz2

)
, R sin

(
ωs√

R2ω2 + vz2

)
,

vzs√
R2ω2 + vz2

)
. (4.1)

In that case, the Serret-Frenet basis for the helix can be calculated as follows:

T = − sinα sin

(
ωs√

R2ω2 + vz2

)
i + sinα cos

(
ωs√

R2ω2 + vz2

)
j + cosαk,

N = − cos

(
ωs√

R2ω2 + vz2

)
i− sin

(
ωs√

R2ω2 + vz2

)
j, (4.2)

B = cosα sin

(
ωs√

R2ω2 + vz2

)
i− cosα cos

(
ωs√

R2ω2 + vz2

)
j + sinαk.

It is not difficult to see that the curvature and the torsion are constant:

κ =
R

R2 + (vz2/ω2 )
, τ =

vz/ω

R2 + (vz2/ω2 )
.
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By means of (2.4), the equalities

τg =
vz/ω

R2 + (vz2/ω2 )
− dϕ

ds
,

kg =
R

R2 + (vz2/ω2 )
cosϕ,

kn =
R

R2 + (vz2/ω2 )
sinϕ

hold. By taking into consideration the relation (2.2) between the Serret-Frenet frame and Darboux
frame and the equation (4.2), we obtain the first Darboux base as

T = − sinα sin

(
ωs√

R2ω2 + vz2

)
i + sinα cos

(
ωs√

R2ω2 + vz2

)
j + cosαk

second Darboux base as

Y =

[
− cosϕ cos

(
ωs√

R2ω2 + vz2

)
− sinϕ cosα sin

(
ωs√

R2ω2 + vz2

)]
i

+

[
− cosϕ sin

(
ωs√

R2ω2 + vz2

)
+ sinϕ cosα cos

(
ωs√

R2ω2 + vz2

)]
j

+ [− sinϕ cosα]k

and third Darboux base as

U =

[
− sinϕ cos

(
ωs√

R2ω2 + vz2

)
+ cosϕ cosα sin

(
ωs√

R2ω2 + vz2

)]
i

+

[
− sinϕ sin

(
ωs√

R2ω2 + vz2

)
− cosϕ cosα cos

(
ωs√

R2ω2 + vz2

)]
j

+ [cosϕ sinα]k

for the helix. From these last three equalities, (3.4) and (4.1),

q =
svz cosα√
R2ω2 + vz2

= tvz cosα, p = R, b =
svz sinα√
R2ω2 + vz2

= tvz sinα (4.3)

can be written. By substituting (4.3) in (3.3), the equality

x = (tvz cosα)T− (R cosϕ+ tvz sinα sinϕ)Y + (−R sinϕ+ tvz sinα cosϕ)U

is obtained. On the other hand,

r =
√
R2 + t2 vz2cos2α , r∗ = t vz

can be written by using (3.6) and (4.3).



On the jerk in motion along a regular surface curve 77

Consequently, if Theorem 3.1 is applied, the components of the jerk are obtained as follows:

Tt =
−R2ω4 − ω2vz

2

√
R2ω2 + vz2

, Tr = 0, Tr∗ = ω2vz

for the particle P .
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